O.P.Code: 20ME3102

Time: 3 Hours

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

M.Tech I Year I Semester Regular & Supplementary Examinations February-2025 ADVANCED FLUID DYNAMICS

(Thermal Engineering)

•			1110021	· AVECE.	iks. Ot
	1	(Answer all Five Units 5 x 12 = 60 Marks) UNIT-I Outline the derivation of continuity equation by using integral and differential approach. OR	CO1	L2	12M
	2	Explain in detail about the boundary layer equation.	CO1	L5	12M
	3	What are the application of empirical relation to various geometries for laminar and turbulent flows and explain in detail. OR	CO2	L1	12M
	4	Prove the various empirical equations available to predict natural convection heat transfer coefficient.	CO2	L6	12M
	5	Prove the boundary layer equation.	CO3	L6	12M
		OR			
	6	Discuss shortly about the boundary -layer thickness.	CO3	L5	12M
	7	Derive the governing equation for turbulent flow.	CO4	L5	12M
		OR			
	8	Prove the universal velocity profile on a flat plate and rectangular plate.	CO4	L6	12M
	9	Discus the design of experiments with some suitable application. OR	CO5	L5	12M
	10	Explain the working principle of Particle Image Velocimetry with neat diagram. *** END ***	CO5	L1	12M

Max. Marks: 60